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Capacitance

What Is Physics?
One goal of physics is to provide the basic science for practical devices 
designed by engineers. The focus of this chapter is on one extremely common  
example—the capacitor, a device in which electrical energy can be stored. For 
example, the batteries in a camera store energy in the photoflash unit by charg-
ing a capacitor. The batteries can supply energy at only a modest rate, too slowly 
for the photoflash unit to emit a flash of light. However, once the capacitor is 
charged, it can supply energy at a much greater rate when the photoflash unit is 
triggered—enough energy to allow the unit to emit a burst of bright light.

The physics of capacitors can be generalized to other devices and to any situ-
ation involving electric fields. For example, Earth’s atmospheric electric field is 
modeled by meteorologists as being produced by a huge spherical capacitor that 
partially discharges via lightning. The charge that skis collect as they slide along 
snow can be modeled as being stored in a capacitor that frequently discharges as 
sparks (which can be seen by nighttime skiers on dry snow).

The first step in our discussion of capacitors is to determine how much charge 
can be stored. This “how much” is called capacitance.

Capacitance
Figure 25-1 shows some of the many sizes and shapes of capacitors. Figure 25-2 
shows the basic elements of any capacitor — two isolated conductors of any 

25-1  CAPACITANCE
Learning Objectives 
After reading this module, you should be able to . . .

25.01 Sketch a schematic diagram of a circuit with a 
parallel-plate capacitor, a battery, and an open or 
closed switch.

25.02 In a circuit with a battery, an open switch, and an 
uncharged capacitor, explain what happens to the 
conduction electrons when the switch is closed.

25.03 For a capacitor, apply the relationship between the 
magnitude of charge q on either plate (“the charge on 
the capacitor”), the potential difference V between the 
plates (“the potential across the capacitor”), and the 
capacitance C of the capacitor.

Key Ideas 
● A capacitor consists of two isolated conductors (the plates) 
with charges +q and –q. Its capacitance C is defined from

q = CV,

where V is the potential difference between the plates.

● When a circuit with a battery, an open switch, and an 
uncharged capacitor is completed by closing the switch, 
conduction electrons shift, leaving the capacitor plates 
with opposite charges.

Figure 25-2  Two conductors, isolated electrically from each other and from their 
surroundings, form a capacitor. When the capacitor is charged, the charges on the 
conductors, or plates as they are called, have the same magnitude q but opposite signs. 

Figure 25-1  An assortment of capacitors. 
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Figure 25-4  (a) Battery B, switch S, and 
plates h and l of capacitor C, connected 
in a circuit. (b) A schematic diagram with 
the circuit elements represented by their 
symbols.
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shape. No matter what their geometry, flat or not, we call these conductors 
plates.

Figure 25-3a shows a less general but more conventional arrangement, called 
a parallel-plate capacitor, consisting of two parallel conducting plates of area 
A separated by a distance d. The symbol we use to represent a capacitor (⫞⊦) is 
based on the structure of a parallel-plate capacitor but is used for capacitors of 
all geometries. We assume for the time being that no material medium (such as 
glass or plastic) is present in the region between the plates. In Module 25-5, we 
shall remove this restriction.

When a capacitor is charged, its plates have charges of equal magnitudes but 
opposite signs: +q and –q. However, we refer to the charge of a capacitor as being q,  
the absolute value of these charges on the plates. (Note that q is not the net 
charge on the capacitor, which is zero.)

Because the plates are conductors, they are equipotential surfaces; all points on 
a plate are at the same electric potential. Moreover, there is a potential difference 
between the two plates. For historical reasons, we represent the absolute value of 
this potential difference with V rather than with the ΔV we used in previous notation.

The charge q and the potential difference V for a capacitor are proportional 
to each other; that is,

	 q = CV.	 (25-1)

The proportionality constant C is called the capacitance of the capacitor. Its value 
depends only on the geometry of the plates and not on their charge or potential 
difference. The capacitance is a measure of how much charge must be put on the 
plates to produce a certain potential difference between them: The greater the 
capacitance, the more charge is required.

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt. 
This unit occurs so often that it is given a special name, the farad (F):

	 1 farad = 1 F = 1 coulomb per volt = 1 C/V.� (25-2)

As you will see, the farad is a very large unit. Submultiples of the farad, such as 
the microfarad (1 μF = 10–6 F) and the picofarad (1 pF = 10–12 F), are more con-
venient units in practice.

Charging a Capacitor
One way to charge a capacitor is to place it in an electric circuit with a battery. 
An electric circuit is a path through which charge can flow. A battery is a device 
that maintains a certain potential difference between its terminals (points at 
which charge can enter or leave the battery) by means of internal electrochemi-
cal reactions in which electric forces can move internal charge.

In Fig. 25-4a, a battery B, a switch S, an uncharged capacitor C, and inter
connecting wires form a circuit. The same circuit is shown in the schematic dia-
gram of Fig. 25-4b, in which the symbols for a battery, a switch, and a capacitor 
represent those devices. The battery maintains potential difference V between 
its terminals. The terminal of higher potential is labeled + and is often called the 
positive terminal; the terminal of lower potential is labeled – and is often called 
the negative terminal.

Figure 25-3  (a) A parallel-plate capacitor, 
made up of two plates of area A separated 
by a distance d. The charges on the facing 
plate surfaces have the same magnitude q  
but opposite signs. (b) As the field 
lines show, the electric field due to the 
charged plates is uniform in the central 
region between the plates. The field is 
not uniform at the edges of the plates, as 
indicated by the “fringing” of the field 
lines there.
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The circuit shown in Figs. 25-4a and b is said to be incomplete because 
switch S is open; that is, the switch does not electrically connect the wires 
attached to it. When the switch is closed, electrically connecting those wires, 
the circuit is complete and charge can then flow through the switch and the 
wires. As we discussed in Chapter 21, the charge that can flow through a con-
ductor, such as a wire, is that of electrons. When the circuit of Fig. 25-4 is 
completed, electrons are driven through the wires by an electric field that the 
battery sets up in the wires. The field drives electrons from capacitor plate h 
to the positive terminal of the battery; thus, plate h, losing electrons, becomes 
positively charged. The field drives just as many electrons from the negative 
terminal of the battery to capacitor plate l; thus, plate l, gaining electrons, 
becomes negatively charged just as much as plate h, losing electrons, becomes 
positively charged.

Initially, when the plates are uncharged, the potential difference between 
them is zero. As the plates become oppositely charged, that potential differ-
ence increases until it equals the potential difference V between the terminals 
of the battery. Then plate h and the positive terminal of the battery are at the 
same potential, and there is no longer an electric field in the wire between 
them. Similarly, plate l and the negative terminal reach the same potential, 
and there is then no electric field in the wire between them. Thus, with the 
field zero, there is no further drive of electrons. The capacitor is then said to 
be fully charged, with a potential difference V and charge q that are related 
by Eq. 25-1.

In this book we assume that during the charging of a capacitor and after-
ward, charge cannot pass from one plate to the other across the gap separating 
them. Also, we assume that a capacitor can retain (or store) charge indefinitely, 
until it is put into a circuit where it can be discharged.

  Checkpoint 1
Does the capacitance C of a capacitor increase, decrease, or remain the same (a) when 
the charge q on it is doubled and (b) when the potential difference V across it is tripled?

25-2  CALCULATING THE CAPACITANCE
Learning Objectives 
After reading this module, you should be able to . . .

25.04 Explain how Gauss’ law is used to find the capacitance of a parallel-plate capacitor.
25.05 For a parallel-plate capacitor, a cylindrical capacitor, a spherical capacitor, and an isolated sphere, calculate the 

capacitance.

Key Ideas 
● We generally determine the capacitance of a particular 
capacitor configuration by (1) assuming a charge q to 
have been placed on the plates, (2) finding the electric 
field E

→
 due to this charge, (3) evaluating the potential dif-

ference V between the plates, and (4) calculating C from 
q = CV. Some results are the following:

● A parallel-plate capacitor with flat parallel plates of area 
A and spacing d has capacitance

C =
ε0A
d

.

● A cylindrical capacitor (two long coaxial cylinders) of 

length L and radii a and b has capacitance

C = 2πε0
L

ln(b
a)

.

● A spherical capacitor with concentric spherical plates 
of radii a and b has capacitance

C = 4πε0
ab

b − a
.

● An isolated sphere of radius R has capacitance

C = 4πε0R.

25-2  CALCULATING THE CAPACITANCE
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Figure 25-5  A charged parallel-plate 
capacitor. A Gaussian surface encloses the 
charge on the positive plate. The inte-
gration of Eq. 25-6 is taken along a path 
extending directly from the negative plate 
to the positive plate.
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Calculating the Capacitance
Our goal here is to calculate the capacitance of a capacitor once we know its 
geometry. Because we shall consider a number of different geometries, it seems 
wise to develop a general plan to simplify the work. In brief our plan is as follows: 
(1) Assume a charge q on the plates; (2) calculate the electric field E

→
 between 

the  plates in terms of this charge, using Gauss’ law; (3) knowing E
→

, calculate 
the potential difference V between the plates from Eq. 24-18; (4) calculate C 
from Eq. 25-1.

Before we start, we can simplify the calculation of both the electric field 
and the potential difference by making certain assumptions. We discuss each 
in turn.

Calculating the Electric Field
To relate the electric field E

→
 between the plates of a capacitor to the charge q on 

either plate, we shall use Gauss’ law:

	
ε0 ∮  E

→
· d A

→
= q.	 (25-3)

Here q is the charge enclosed by a Gaussian surface and ∮ E
→

· d A
→

 is the net 
electric flux through that surface. In all cases that we shall consider, the Gaussian 
surface will be such that whenever there is an electric flux through it, E

→
 will have 

a uniform magnitude E and the vectors E
→

 and d A
→

 will be parallel. Equation 25-3 
then reduces to

	 q = ε0EA	 (special case of Eq. 25-3),	 (25-4)

in which A is the area of that part of the Gaussian surface through which there is 
a flux. For convenience, we shall always draw the Gaussian surface in such a way 
that it completely encloses the charge on the positive plate; see Fig. 25-5 for an 
example.

Calculating the Potential Difference
In the notation of Chapter 24 (Eq. 24-18), the potential difference between 
the plates of a capacitor is related to the field E

→
 by

	 Vf − Vi = −∫
f

i
 E
→

· d s→,	 (25-5)

in which the integral is to be evaluated along any path that starts on one plate 
and ends on the other. We shall always choose a path that follows an electric 
field line, from the negative plate to the positive plate. For this path, the vectors 
E
→

 and d s→ will have opposite directions; so the dot product E
→

· d s→ will be equal 
to −E ds. Thus, the right side of Eq. 25-5 will then be positive. Letting V represent 
the difference Vf – Vi, we can then recast Eq. 25-5 as

	 V = ∫
+

−
 E ds	 (special case of Eq. 25-5),� (25-6)

in which the – and + remind us that our path of integration starts on the negative 
plate and ends on the positive plate.

We are now ready to apply Eqs. 25-4 and 25-6 to some particular cases.

A Parallel-Plate Capacitor
We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor 
are so large and so close together that we can neglect the fringing of the electric 
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field at the edges of the plates, taking E
→

 to be constant throughout the region 
between the plates.

We draw a Gaussian surface that encloses just the charge q on the positive 
plate, as in Fig. 25-5. From Eq. 25-4 we can then write

	 q = ε0EA,� (25-7)

where A is the area of the plate.
Equation 25-6 yields

	 V = ∫
+

−
E ds = E  ∫

d

0
 ds = Ed.� (25-8)

In Eq. 25-8, E can be placed outside the integral because it is a constant; the sec-
ond integral then is simply the plate separation d.

If we now substitute q from Eq. 25-7 and V from Eq. 25-8 into the relation  
q = CV (Eq. 25-1), we find

	 C =
ε0A
d

	 (parallel-plate capacitor).	 (25-9)

Thus, the capacitance does indeed depend only on geometrical factors—namely, 
the plate area A and the plate separation d. Note that C increases as we increase 
area A or decrease separation d.

As an aside, we point out that Eq. 25-9 suggests one of our reasons for writing 
the electrostatic constant in Coulomb’s law in the form 1/4πε0. If we had not done 
so, Eq. 25-9—which is used more often in engineering practice than Coulomb’s 
law—would have been less simple in form. We note further that Eq. 25-9 permits 
us to express the permittivity constant ε0 in a unit more appropriate for use in 
problems involving capacitors; namely,

	 ε0 = 8.85 × 10–12 F/m = 8.85 pF/m.� (25-10)

We have previously expressed this constant as

	 ε0 = 8.85 × 10–12 C2/N · m2.� (25-11)

A Cylindrical Capacitor
Figure 25-6 shows, in cross section, a cylindrical capacitor of length L formed 
by two coaxial cylinders of radii a and b. We assume that L ⪢ b so that we can 
neglect the fringing of the electric field that occurs at the ends of the cylinders. 
Each plate contains a charge of magnitude q.

As a Gaussian surface, we choose a cylinder of length L and radius r, closed 
by end caps and placed as is shown in Fig. 25-6. It is coaxial with the cylinders 
and  encloses the central cylinder and thus also the charge q on that cylinder. 
Equation 25-4 then relates that charge and the field magnitude E as

q = ε0EA = ε0E(2πrL),

in which 2πrL is the area of the curved part of the Gaussian surface. There is
no flux through the end caps. Solving for E yields

	 E =
q

2πε0Lr
.� (25-12)

Substitution of this result into Eq. 25-6 yields

	 V = ∫
+

−
 E ds = −

q
2πε0L

 ∫
a

b
 
dr
r

=
q

2πε0L
 ln( b

a ) ,� (25-13)

where we have used the fact that here ds = –dr (we integrated radially inward). 

Figure 25-6  A cross section of a long 
cylindrical capacitor, showing a cylindrical 
Gaussian surface of radius r (that encloses 
the positive plate) and the radial path of 
integration along which Eq. 25-6 is to be 
applied. This figure also serves to illustrate 
a spherical capacitor in a cross section 
through its center.
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  Checkpoint 2
For capacitors charged by the same battery, does the charge stored by the capacitor 
increase, decrease, or remain the same in each of the following situations? (a) The 
plate separation of a parallel-plate capacitor is increased. (b) The radius of the inner 
cylinder of a cylindrical capacitor is increased. (c) The radius of the outer spherical 
shell of a spherical capacitor is increased.

From the relation C = q/V, we then have

	 C = 2πε0 
L

ln(b/a)
  (cylindrical capacitor).	 (25-14)

We see that the capacitance of a cylindrical capacitor, like that of a parallel-plate 
capacitor, depends only on geometrical factors, in this case the length L and the 
two radii b and a.

A Spherical Capacitor
Figure 25-6 can also serve as a central cross section of a capacitor that consists of 
two concentric spherical shells, of radii a and b. As a Gaussian surface we draw a 
sphere of radius r concentric with the two shells; then Eq. 25-4 yields

q = ε0EA = ε0E(4πr2),

in which 4πr2 is the area of the spherical Gaussian surface. We solve this equation 
for E, obtaining

	 E =
1

4πε0
 

q
r2  ,� (25-15)

which we recognize as the expression for the electric field due to a uniform spher-
ical charge distribution (Eq. 23-15).

If we substitute this expression into Eq. 25-6, we find

	 V = ∫
+

−
 E ds = −

q
4πε0

 ∫
a

b
 
dr
r2 =

q
4πε0

 ( 1
a

−
1
b ) =

q
4πε0

 
b − a

ab
,� (25-16)

where again we have substituted –dr for ds. If we now substitute Eq. 25-16 into 
Eq. 25-1 and solve for C, we find

	 C = 4πε0 
ab

b − a
  (spherical capacitor).	 (25-17)

An Isolated Sphere
We can assign a capacitance to a single isolated spherical conductor of radius R 
by assuming that the “missing plate” is a conducting sphere of infinite radius. 
After all, the field lines that leave the surface of a positively charged isolated 
conductor must end somewhere; the walls of the room in which the conductor is 
housed can serve effectively as our sphere of infinite radius.

To find the capacitance of the conductor, we first rewrite Eq. 25-17 as

C = 4πε0 
a

1 − a/b
.

If we then let b → ∞ and substitute R for a, we find

	 C = 4πε0R  (isolated sphere).	 (25-18)

Note that this formula and the others we have derived for capacitance (Eqs. 25-9, 
25-14, and 25-17) involve the constant ε0 multiplied by a quantity that has the 
dimensions of a length.
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Additional examples, video, and practice available at WileyPLUS

magnitude that collects there is

q = CV = (0.25 × 10–6 F)(12 V)

= 3.0 × 10–6 C.

Dividing this result by e gives us the number N of conduc-
tion electrons that come up to the face:

N =
q
e

=
3.0 × 10−6 C

1.602 × 10−19 C

	 = 1.873 × 1013 electrons.

These electrons come from a volume that is the product of the 
face area A and the depth d we seek. Thus, from the density 
of conduction electrons (number per volume), we can write

n =
N

Ad
,

or

d =
N

An
=

1.873 × 1013 electrons
(2.0 × 10−4 m2)(8.49 × 1028 electrons/m3)

	 = 1.1 × 10–12 m = 1.1 pm. � (Answer)

We commonly say that electrons move from the battery to 
the negative face but, actually, the battery sets up an electric 
field in the wires and plate such that electrons very close to 
the plate face move up to the negative face.

Sample Problem 25.01 Charging the plates in a parallel-plate capacitor

In Fig. 25-7a, switch S is closed to connect the uncharged 
capacitor of capacitance C = 0.25 μF to the battery of 
potential difference V = 12 V. The lower capacitor plate 
has thickness L = 0.50 cm and face area A = 2.0 × 10–4 m2, 
and it consists of copper, in which the density of conduction 
electrons is n = 8.49 × 1028 electrons/m3. From what depth d 
within the plate (Fig. 25-7b) must electrons move to the plate 
face as the capacitor becomes charged?

KEY IDEA

The charge collected on the plate is related to the capaci-
tance and the potential difference across the capacitor by 
Eq. 25-1 (q = CV).

Calculations:  Because the lower plate is connected to the 
negative terminal of the battery, conduction electrons move 
up to the face of the plate. From Eq. 25-1, the total charge 

Figure 25-7  (a) 
A battery and 
capacitor circuit. 
(b) The lower 
capacitor plate.
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25-3  CAPACITORS IN PARALLEL AND IN SERIES
Learning Objectives 
After reading this module, you should be able to . . .

25.06 Sketch schematic diagrams for a battery and (a) three 
capacitors in parallel and (b) three capacitors in series.

25.07 Identify that capacitors in parallel have the same 
potential difference, which is the same value that their 
equivalent capacitor has.

25.08 Calculate the equivalent of parallel capacitors.
25.09 Identify that the total charge stored on parallel capacitors 

is the sum of the charges stored on the individual capacitors.
25.10 Identify that capacitors in series have the same charge, 

which is the same value that their equivalent capacitor has.
25.11 Calculate the equivalent of series capacitors.
25.12 Identify that the potential applied to capacitors in 

series is equal to the sum of the potentials across the 
individual capacitors.

25.13 For a circuit with a battery and some capacitors in 
parallel and some in series, simplify the circuit in steps 
by finding equivalent capacitors, until the charge and 
potential on the final equivalent capacitor can be deter-
mined, and then reverse the steps to find the charge 
and potential on the individual capacitors.

25.14 For a circuit with a battery, an open switch, and one 
or more uncharged capacitors, determine the amount 
of charge that moves through a point in the circuit 
when the switch is closed.

25.15 When a charged capacitor is connected in parallel to 
one or more uncharged capacitors, determine the charge 
and potential difference on each capacitor when equilib-
rium is reached.

Key Idea 
● The equivalent capacitances Ceq of combinations of 
individual capacitors connected in parallel and in series 
can be found from

Ceq = ∑
n

j =  1
 Cj    (n capacitors in parallel)

and                       
1

Ceq
 = ∑

n

j=1

1
Cj  

  (n capacitors in series).

Equivalent capacitances can be used to calculate the capac-
itances of more complicated series–parallel combinations.

25-3  CAPACITORS IN PARALLEL AND IN SERIES


