تكاليف فيزيك پايه ٢

Kharazmi University Faculty of Physics

Solutions for Homework 3

یادآوری: نماد کرونکر δ_{ij} و نماد لِوی۔چیویتا ϵ_{ijk} به شکل زیر تعریف میشوند:

$$\delta_{ij} = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases}$$

$$\epsilon_{ijk} = \left\{ egin{array}{ll} 1 & ijk = 123,\,231,\,312 \\ 0 & & {\rm cc} \ {\rm$$

می توان نماد لوی چیویتا را به شکل ساده ی زیر نیز بیان کرد:

$$\epsilon_{ijk} = \frac{1}{2}(i-j)(j-k)(k-i)$$

Problem 1:

Calculate the value of each of the following expressions.

$$(c) \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{ijk} \epsilon_{mjk} = ?$$

$$\mathbb{P}$$
 (d) $\sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{ijk} \epsilon_{ijk} = ?$

Answer Problem 1: See the lecture 3.

Problem 2:

Show that

$$\hat{\boldsymbol{e}}_i \cdot (\hat{\boldsymbol{e}}_i \times \hat{\boldsymbol{e}}_k) = \epsilon_{ijk}$$

where \hat{e}_n (n = 1, 2, 3) are the orthonormal right-handed basis vectors in the order 1, 2, 3.

Answer Problem 2: See the lecture 3.

تکالیف فیزیک پایه ۲

Problem 3:

Show that

$$oldsymbol{A} imes oldsymbol{B} = \sum_{i=1}^3 \sum_{j=1}^3 \sum_{k=1}^3 \epsilon_{ijk} A_i B_j \hat{oldsymbol{e}}_k$$

Answer Problem 3:

$$\mathbf{A} = A_1 \hat{\mathbf{e}}_1 + A_2 \hat{\mathbf{e}}_2 + A_3 \hat{\mathbf{e}}_3 = \sum_{i=1}^3 A_i \hat{\mathbf{e}}_i$$

$$\mathbf{B} = B_1 \hat{\mathbf{e}}_1 + B_2 \hat{\mathbf{e}}_2 + B_3 \hat{\mathbf{e}}_3 = \sum_{i=1}^3 B_j \hat{\mathbf{e}}_j$$

$$\mathbf{A} \times \mathbf{B} = \sum_{i=1}^{3} \sum_{j=1}^{3} A_i B_j \hat{\mathbf{e}}_i \times \hat{\mathbf{e}}_j$$
$$= \sum_{i=1}^{3} \sum_{j=1}^{3} A_i B_j \sum_{k=1}^{3} \epsilon_{ijk} \hat{\mathbf{e}}_k$$
$$= \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{ijk} A_i B_j \hat{\mathbf{e}}_k$$

Problem 4:

Show that

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \sum_{i=1}^{3} \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{ijk} A_i B_j C_k$$

Answer Problem 4:

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \sum_{i=1}^{3} A_i (\mathbf{B} \times \mathbf{C})_i$$

$$= \sum_{i=1}^{3} A_i \sum_{i=j}^{3} \sum_{k=1}^{3} \epsilon_{jki} B_j C_k$$

$$= \sum_{i=1}^{3} \sum_{i=j}^{3} \sum_{k=1}^{3} \epsilon_{jki} A_i B_j C_k$$

$$= \sum_{i=1}^{3} \sum_{j=j}^{3} \sum_{k=1}^{3} \epsilon_{ijk} A_i B_j C_k$$

کالیف فیزیک یایه ۲

Problem 5:

Show that

$$A \cdot (B \times C) = (A \times B) \cdot C$$

Answer Problem 5:

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \sum_{i=1}^{3} A_i (\mathbf{B} \times \mathbf{C})_i$$

$$= \sum_{i=1}^{3} A_i \sum_{i=j}^{3} \sum_{k=1}^{3} \epsilon_{jki} B_j C_k$$

$$= \sum_{i=1}^{3} \sum_{i=j}^{3} \sum_{k=1}^{3} \epsilon_{jki} A_i B_j C_k$$

$$= \sum_{k=1}^{3} \left(\sum_{i=1}^{3} \sum_{i=j}^{3} \epsilon_{ijk} A_i B_j \right) C_k$$

$$= \sum_{k=1}^{3} (\mathbf{A} \times \mathbf{B})_k C_k$$

$$= (\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$$

Problem 6:

Show that

$$\sum_{i=1}^{3} \epsilon_{ijk} \epsilon_{ilm} = \delta_{jl} \delta_{km} - \delta_{jm} \delta_{kl}$$

Answer Problem 6: The left side is a sum of three terms:

$$\epsilon_{iki}\epsilon_{ilm} = \epsilon_{1ki}\epsilon_{1lm} + \epsilon_{2ki}\epsilon_{2lm} + \epsilon_{3ki}\epsilon_{3lm}.$$

This identity can be understood as follows: For the Levi-Civita symbol to have nonzero values, all indices must differ in each factor on the left side $(j \neq k \neq i \text{ and } j \neq l \neq m)$. Since the first index j is shared in both Levi-Civita symbols, and indices take values 1, 2, or 3, there are two possibilities: either k = l or k = m.

- If k = l, the remaining indices must satisfy i = m, resulting in a term $\delta_{kl}\delta_{im}$.
- If k = m, swapping l and m introduces a minus sign, leading to $-\delta_{km}\delta_{il}$.

Combining these cases, the full identity becomes:

$$\epsilon_{iki}\epsilon_{ilm} = \delta_{kl}\delta_{im} - \delta_{km}\delta_{il}.$$

Proper attention to index ordering ensures the correct signs in the final expression.

تكاليف فيزيك پايه ٢

Problem 7:

Show that

$$\sum_{i=1}^{3} \sum_{k=1}^{3} \epsilon_{ijkmjk} = 2\delta_{im}$$

Answer Problem 7:

Using

$$\sum_{i=1}^{3} \epsilon_{ijk} \epsilon_{imn} = \delta_{jm} \delta_{kn} - \delta_{jn} \delta_{km}$$

we can write:

$$\begin{split} \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{ijk} \epsilon_{mjk} &= \sum_{j=1}^{3} \sum_{k=1}^{3} \epsilon_{kij} \epsilon_{kmj} \\ &= \sum_{j=1}^{3} (\delta_{im} \delta_{jj} - \delta_{ij} \delta_{jm}) \\ &= \sum_{j=1}^{3} (\delta_{im} - \delta_{ij} \delta_{jm}) \\ &= \sum_{j=1}^{3} \delta_{im} - \sum_{j=1}^{3} \delta_{ij} \delta_{jm} \\ &= 3\delta_{im} - \delta_{im} \\ &= 2\delta_{im} \end{split}$$

Problem 8:

Show that $A \times (B \times C) = B(A \cdot C) - C(A \cdot B)$. This is known as the BAC-CAB rule.

Answer Problem 8:

$$[\mathbf{A} \times (\mathbf{B} \times \mathbf{C})]_i = \sum_j \sum_k \epsilon_{ijk} A_j (\mathbf{B} \times \mathbf{C})_k$$
$$= \sum_j \sum_k \epsilon_{ijk} A_j \sum_m \sum_l \epsilon_{klm} B_l C_m$$
$$= \sum_j \sum_k \sum_m \sum_l \epsilon_{klm} \epsilon_{ijk} A_j B_l C_m$$

using

$$\sum_{k} \epsilon_{klm} \epsilon_{ijk} = \delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}$$

تکالیف فیزیک پایه ۲

$$\begin{aligned} [\boldsymbol{A} \times (\boldsymbol{B} \times \boldsymbol{C})]_i &= \sum_j \sum_m \sum_l (\delta_{il} \delta_{jm} - \delta_{im} \delta_{jl}) A_j B_l C_m \\ &= \sum_j \sum_m \sum_l \delta_{il} \delta_{jm} A_j B_l C_m - \sum_j \sum_m \sum_l \delta_{im} \delta_{jl} A_j B_l C_m \\ &= \sum_j \sum_l \delta_{il} A_j B_l C_j - \sum_j \sum_m \delta_{im} A_j B_j C_m \\ &= \sum_j (A_j C_j) B_i - \sum_j (A_j B_j) C_i \\ &= (\boldsymbol{A} \cdot \boldsymbol{C}) B_i - (\boldsymbol{A} \cdot \boldsymbol{B}) C_i \end{aligned}$$

Therefor,

$$A \times (B \times C) = B(A \cdot C) - C(A \cdot B)$$